Sleep-deprivation aggravates cortical gamma dysregulation in juvenile Syngap1*- mice.
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Introduction

SYNGAP1T codes for SYNGAP1, a Ras-GTPase activating protein that negatively regulates
Ras-ERK signaling and tightly controls AMPA receptor (AMPAR) recruitment to the post
synaptic density. Autosomal mental retardation type 5 (MRDS5), one of the most prevalent
intellectual disabilities (IDs) with epilepsy, is caused by heterozygous loss-of-function
SYNGAP1 variants. Patients with MRDS5 demonstrate abnormal spiking during EEG
recordings as well as atonic, myoclonic, absence, and generalized tonic-clonic seizures
(Hamdan et al., 2009; Mignot et al., 2016). MRDS5 patients also report sleep complications,
supporting the relationship between epilepsy and dysfunctional sleep (Parker et al., 2015;
Prchalova et al., 2017). Perampanel (PMP) is an FDA approved non-competitive AMPAR
antagonist. To investigate the natural history of the epilepsy associated with heterozygous
loss-of-function SYNGAP7T mutations and the anti-seizure efficacy of PMP, a Syngap?
heterozygous loss-of-function mouse model (deletions of exon 7 and 8; clinically refractory)
underwent 24h vVEEG/EMG recordings at juvenile ages (P25-P40).

Methods

24h tethered VEEG recording was performed for Het*- mice and their age- and sex matched
WT littermates at P21-P30, followed by telemetric VEEG for 24h with 6h sleep deprivation at
P35. Quantitative EEG (QEEG) analysis included the frequency bands: delta (0.5-4.0 Hz),
theta (5.5-8.0 Hz), alpha (8.0-13.0 Hz), beta (13.0-30 Hz), and gamma (35-50 Hz).
Specifically, linear regression of gamma frequency power during transition states from wake
to sleep was quantified. Spike frequency over 24h EEG was scored by a blind reviewer
based on previously published parameters. The effect of low-dose perampanel (PMP;
2mg/kg, IP, BD), an AMPA receptor antagonist, on these potential gEEG biomarkers was
investigated. Movement analysis was performed at 5am — 7am using infrared cameras to
trace fast-active movements. Additionally, 24h telemetric vEEG was recorded during novel
object and marble burying behavioral tests.

Figure 1: Experimental Scheme
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Sleep Bout Analysis

Juvenile HET*- mice displayed altered sleep architecture
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Figure 2: (A) Prior to sleep deprivation, the longest wake cycle remains constant between
groups. (B) HET*- displayed longer wake duration during the dark phase (WT** vs. HET*-:
unpaired t-test; p <0.01) (C) while the relation was absent during the light phase. (D) HET*-
had shorter duration of sleep than WT**in a 24h recording (WT** vs. HET*-: unpaired t-test;
p <0.05). (E) Unlike prior to 6h sleep deprivation, HET*- SD presented with higher longest
wake cycle (WT** SD vs. HET*- SD: unpaired t-test; p <0.01) (F) and number of wake cycles
during the dark phase (WT** SD vs. HET*- SD: unpaired t-test; p <0.01). (G-H) Additionally,
HET*- SD had increased frequency of REM cycles during the light phase (WT** SD vs.
HET*- SD: unpaired t-test; p <0.01), while the frequency of NREM cycles was constant.
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Cortical Gamma Dysregulation

PMP rescued gamma dysregulation
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Sleep Deprivation

Sleep deprivation aggravated gamma dysregulation
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Figure 4: (A) WT** 10 second epoch of a 24h vVEEG with 6h sleep deprivation. On the right is a
representative gamma homeostasis that decreases from wake to sleep at a transition point noted with a red
arrow. The light/dark phase is noted on top with white/black bar, and the sleep deprivation segment is
marked in red. (B) HET*- displayed increased gamma slope from wake to sleep after sleep deprivation. (C)
Low-dose PMP (2mg/kg, IP) rescued gamma dysregulation during sleep transition points in HET*- after 6h
sleep deprivation. (D) The effect of 6h sleep deprivation was confirmed by comparing the delta frequency
power before and after sleep deprivation in WT**. As expected, the delta frequency power increased with 6h
sleep deprivation (WT** vs. WT** PMP: One-way ANOVA; p < 0.05). (E) Delta power during NREM did not
show notable statistical significance across all groups (One-way ANOVA, multiple comparison). (F) Gamma
dysregulation was aggravated by 6h sleep deprivation as the magnitude of abnormal positive gamma slope
further increased (HET*- vs. HET*- SD: paired t-test; p < 0.05). PMP rescued gamma homeostasis by
decreasing the most dominant slope in sleep deprived HET*-mice (HET*- SD vs. HET*- SD PMP*"-: paired
t-test; p < 0.05). (G1-2) Histogram of gamma slope from REM to NREM before and after sleep deprivation in
WT** and HET*-. Following a similar trend, HET*- had broader positive tail in gamma slope in with and
without sleep deprivation (WT** vs. HET*-: one-way ANOVA; p < 0.05. WT** SD vs. HET*- SD: one-way
ANOVA; p < 0.05).
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Juvenile HET*-mice displayed hyperactivity in movement analysis
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Nesting behavior, marble burying, and novel object tests showed hyperactivity
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Interictal Spikes

Figure 7: (A) Representative EEG traces of a Syngap7*- mouse demonstrating abnormal
cortical spikes in the frontal region (denoted by *) during wake and NREM sleep. (B)

Summary

4

< Sleep bout analysis suggested altered sleep architecture in juvenile
Syngap1*- mice

< Gamma dysregulation from wake to sleep was present in juvenile
Syngap1*- mice.

<+ Gamma dysregulation was aggravated after 6h sleep deprivation.

< Acute treatment with PMP, an AMPAR antagonist, rescued cortical
gamma homeostasis.

<+ Behavior analyses on juvenile Syngap7*- mice suggest hyperactivity.

< Some juvenile Syngap7*- mice displayed abnormal cortical spikes
predominantly during NREM sleep stage.
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