Yun, Hwang¹; Kripi, Singapuri¹; Sullivan, Brennan J.¹; Preeti, Vyas.^{1,2}; Anjali, Devireddy¹; Kadam, Shilpa D.^{1, 2}

¹Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger; ² Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205

ANOVA; p < 0.05).

HET^{+/-} SD: unpaired t-test; p <0.01), while the frequency of NREM cycles was constant.

Sleep-deprivation aggravates cortical gamma dysregulation in juvenile Syngap1^{+/-} mice.

Representative 24h hypnograms and WT^{+/+} 10 second epoch of a 24h baseline vEEG with a loess trendline in black. On the right is a representative homeostatic gamma slope that decreased from wake to sleep at a transition point noted with a red arrow. The light/dark phase was noted on top with a white/black bar. (B) Representative gamma dysregulation in HET^{+/-} where the gamma power did not decrease from wake to NREM sleep. (C) Representation of low-dose PMP (2mg/kg, IP, BD) rescuing the gamma homeostasis in HET^{+/-}. (D) PMP significantly reduced the slope and rescued the gamma homeostasis in behavioral transitioning points (HET^{+/+} vs. HET PMP^{+/-}: paired t-test; p < 0.05). (E) Delta power during NREM did not show notable statistical significance

WT^{+/+} and HET^{+/-}. Following a similar trend, HET^{+/-} had broader positive tail in gamma slope in with and without sleep deprivation (WT^{+/+} vs. HET^{+/-}: one-way ANOVA; p < 0.05. WT^{+/+} SD vs. HET^{+/-} SD: one-way

Figure 5: (A1) Representative image of infrared camera used for movement analysis during the dark cycle. Hyperactivity was measured by tracing the fast-active events (A2 – A4) 2h representative traces of WT^{+/+} HET^{+/-}, and HET^{+/-} with PMP activity plots (5 – 7 am). (A5) HET^{+/-} had significantly increased level of fast active events compared to WT^{+/+} (WT^{+/+} vs. HET^{+/-} : unpaired t-test; p < 0.05).

Figure 6:

(A1) Representative image of a nest of WT^{+/+} (A2) and HET^{+/-} after 24h recording. (A3) Score was given based the area of the nest. HET^{+/-} significantly had compared to higher score WT+/+ (WT^{+/+} vs. HET^{+/-}: unpaired t-test; p < 0.05). (C) Additionally, marble burying testing showed hyperactivity in HET^{+/-} (WT^{+/+} vs. HET^{+/-}: Object 2 time 2 unpaired t-test; p < 0.05). (D) HET^{+/-} had more interaction with the initial novel object than WT^{+/+} (WT^{+/+} vs. HET^{+/-} at object 1 time 1: two-way ANOVA; p < 0.05)

Figure 7: (A) Representative EEG traces of a Syngap1^{+/-} mouse demonstrating abnormal

Sleep bout analysis suggested altered sleep architecture in juvenile

Acute treatment with PMP, an AMPAR antagonist, rescued cortical

Behavior analyses on juvenile Syngap1^{+/-} mice suggest hyperactivity. Some juvenile Syngap1^{+/-} mice displayed abnormal cortical spikes

Support: RO1HD090884 (SDK) The Eunice Kennedy Shriver National Institute of Child Health &